Skip to main content

Study pinpoints when the Galápagos Islands developed their unique ecology


Study pinpoints when the Galápagos Islands developed their unique ecology


The tremendous wildlife biodiversity on the Galapagos Islands is due in part to the geology of part of the archipelago, says a new study involving the University of Colorado Boulder.
Credit: University of Colorado
The Galápagos Islands are home to a tremendous diversity of plants and animals found nowhere else in the world. But why this is, and when it all began, remains something of an open question.
Now scientists may have at least one more piece of the puzzle. According to a new study out today in Earth and Planetary Science Letters, the geologic formation of one particular part of the archipelago -- the part responsible for the huge biodiversity -- formed, approximately 1.6 million years ago.
The lead author of the study is CIRES Fellow Kris Karnauskas, who you might say has a thing for these islands. He's studied them extensively, authoring six peer-reviewed scientific papers with "Galápagos" in the title. But one question in particular kept nagging at him: When did the Galápagos become the Galápagos?
"I asked around and couldn't get a straightforward answer," says Karnauskas, who's also an Assistant Professor in the Department of Atmospheric and Oceanic Sciences at the University of Colorado Boulder. "My geology friends said anywhere between half a million to twenty million years ago, depending on what feature we're talking about."
The age of one particular island, or even the whole chain, wasn't quite what Karnauskas was looking for. "I wasn't really interested in when the very first island breached the surface, but when this ecosystem developed," he says. He wanted to put a finger on the geologic event or moment that turned the Galápagos from just another set of ordinary oceanic islands into one of the most biologically diverse spots in the world. "That's not the customary way to ask questions in geology, nor does it lend itself to the usual toolbox."
To start with the basics, the Galápagos sit on the Nazca tectonic plate, off the coast of South America. The plate is slowly moving from west to east (about 4 cm each year), and happens to be traveling over a hotspot, a point at which magma from Earth's core makes it all the way through the crust, forming volcanic islands. The oldest of the Galápagos islands, now eroded and no longer above water, is millions of years old; the youngest island, farther west, currently sits on top of the hotspot.
Karnauskas and his colleagues hypothesized that the critical event that caused a biological explosion in the Galápagos came about when the Equatorial Undercurrent (EUC) began colliding with the archipelago. The EUC is a current that, because of the laws of physics -- the shape of Earth and the way it spins -- is virtually stuck to the equator. But what happens when something gets in the way?
"That's what occurred with the Galápagos," says Karnauskas. At some point, a large enough island (or possibly a cluster of them) rose high enough from the seafloor to block the current. Today, it's the island of Isabela that serves that role. "It's a pure accident of geography that Isla Isabela is so large and stands right on the equator, right where the EUC is trying to pass through. This is enough to drive cold, nutrient-rich water up to the surface where it can fuel marine productivity. We can easily see it today from space; the water is very cold and productive just west of the Galápagos along the shores of Isabela. It's no surprise that you'll find all the penguins jumping in the water there."
Finding out exactly when the Galápagos blocked the EUC required help from some the paleoceanography community. Karnauskas and his colleagues used previously collected data from sediment cores -- deep samples of the sea floor -- that had been pulled up from sample sites near the Galápagos Islands and South America. The data files, which are hosted by NOAA Boulder's National Centers for Environmental Information, provided information on changes in sea surface temperatures over millions of years.
Low and behold, approximately 1.6 million years ago, they saw shifts in the chemical composition of the fossil bugs in the sediment suggesting a significant change in those temperatures. Cold water that had once been upwelling off the coast of South America was suddenly upwelling along the western shores of the Galápagos instead. That sounded familiar to Karnauskas and coauthors; they knew from their own model experiments conducted over the past decade that this was the fingerprint of the Galápagos blocking the EUC. Coauthor Eric Mittelstaedt, Assistant Professor of Geological Sciences at the University of Idaho, then developed a new computer model of the archipelago's geologic evolution; by combining that model with Karnauskas' ocean circulation model, the team was able to independently corroborate the timing.
At that moment in time (geologically speaking, of course), the Galápagos ecosystem was forever changed. Since the EUC could no longer keep going straight toward the mainland, some of it rushed upward, carrying with it those cold, nutrient-rich waters to the surface, and creating conditions in which the fish, plants and penguins that now call the island chain home could thrive.
"Typically, we use known geologic constraints to help explain past changes in the environment such as ocean circulation," says Karnauskas. "In this case, we flipped the problem on it's head, combined models that aren't normally combined, and discovered a new constraint for piecing together the bigger picture of the evolution of, and on, the islands over time. It contributes a unique data point not only for geology but also for ecology and biogeography -- where and when life is distributed."


https://www.sciencedaily.com/releases/2016/12/161220140927.htm

Comments

Unknown said…
Study pinpoints when the Galápagos Islands developed their unique ecology

Top 10 post

Reproduction of Deuteromycetes

    F ungi that reproduce asexually (anamorphic fungi ) are either yeasts or Deu-teromycetes. The term "yeast" is descriptive and stands for any fungus that reproduces by budding. Deuteromycetes (Fungi imperfecti, colloquially: molds) is an artificial as-semblage of fungi that reproduce asexually by conidia (conidiospores), either as the only form for propagation (imperfect fungi) or additionally (anamorph) to a sexual reproduction (teleomorph). When both the anamorph and the teleo-morph are known, the fungus is called a holomorph (the whole fungus). The teleomorph may have one (mono-anamorphic) or many (pleo-anamorphic) asexual stages. In other words: Deuteromycetes are the conidia-producing forms of a fungus and may or may not be associated with a teleomorph. Many Deuteromycetes are supposed to have a teleomorph in the Ascomycetes, but they may also have basidiomycetous affinity. Also in the wood-inhabiting Deuteromycetes, the teleomorph often is of ascomycetous a

What shapes the peer review landscape in ecology?

It was great to be discussing the future of peer review with researchers at the recent peer review  panel discussion  organised by the British Ecological Society (BES) at their annual conference in Liverpool last week. Jane Hill (Professor of Ecology at the University of York and Chair of BES Publications Committee) chaired the debate, and we heard from Allen Moore (Editor-in-Chief,  Ecology and Evolution),  Patricia Morse (Managing Editor,  American Naturalist ), Nate Sanders (Senior Editor,  Journal of Animal Ecology ), Andy Robertson (Senior Vice President & Managing Director, Society Services, Wiley) and me. We started with a discussion of ways in which the publishing process could be opened up, with Allen advocating open science principles and pre-registration of research. Nate also shared his experience in the value of “opening up” research online to get people talking and to generate new ideas. Andy Robertson suggested that partnering with services such as  Overlea

Islands

      H ow often have you seen those wonderful advertisements inviting you to have a holiday on a tropical island ( Fig. )What is it about islands, whether in the tropics or polar regions, that suggests romance, excitement and adventure? Is it because of a sense of escape from the pressures and stress of a bustling way of life, or the opportunity to savour sun-soaked beaches, or the adventure of rocky unexplored shores, or perhaps the chance of seeing unique island wildlife? It is for all these reasons that there is a growing tourist industry for many islands around the world. The wildlife of islands, especially oceanic islands , has long been of special significance in biology , ecology , conservation and biogeography. Studies of island species have also been of historical significance for evolutionary biology. Many of the world's islands have high levels of endemic flora and fauna; that is, taxa found only on a particular island and no other place.  Island biota has o

Red Streaking

Red Streaking Red-streaking discoloration (known as "Rotstreifigkeit" in Germany) is one of the most common and important damage in seasoning logs and sawn lumber, occurring only in conifers (spruce, pine, fir) and recognized as a distinct con-dition in continental Europe.  The stripe-shaped to spotted yellow to reddish-brown discoloration extends in logs from both their bark-covered faces and from their cut ends (Butin 1995; Baum and Bariska 2002) . Stems that are not debarked show a rather flat discoloration and debarked stems exhibit a streakier staining (v. Pechmann et al. 1967). Causal agents are several white-rot Basidiomycetes, in spruce particularly Stereum sanguinolentum (Kleist and Seehann 1997) and Amylostereum areola-turn. In south Germany, Amylostereum chailettii is common (Zycha and Knopf 1963; v. Pechmann et al. 1967).  In pine, red streaking is mainly due to Trichap-turn abietinum (Butin 1995). According to Kreisel (1961), S. sanguinolentum and T

Ecosia ; Ecology Search

https://www.ecosia.org/ How it works You search the web with Ecosia.   Ads Search ads generate income for Ecosia.   Ecosia uses this income to plant trees. httpecologicaljournal.blogspot.com Ecosia about video

Bioenergetics

T housands of chemical reactions occur throughout the body during each minute of the day. Collec-tively, these reactions are called metabolism. Metab-olism includes chemical pathways that result in the synthesis of molecules (anabolic reactions) as well as the breakdown of molecules (catabolic reactions). Since energy is required by all cells, it is not sur-prising that cells possess chemical pathways that are capable of converting foodstuffs (i.e., fats, proteins, carbohydrates) into a biologically usable form of energy .  This metabolic process is termed bioenergetics. In order for you to run, jump, or swim, skeletal muscle cells must be able to continuously extract energy from food nutrients. In fact, the inability to transform energy contained in foodstuffs into usable biological energy would limit performance in endurance activities. The explanation for this is simple. To continue to contract, muscle cells must have a continuous source of energy. When energy is not rea

White Rot

W hite-rot research has been reviewed by Ericksson et al. (1990) and Mess-ner et al. (2003). White rot means the degradation of cellulose, hemicellu-loses, and lignin usually by Basidiomycetes and rarely by Ascomycetes, e.g., Kretzschmaria deusta and Xylaria hypoxylon.  White rot has been classified by macroscopic characteristics into white-pocket, white-mottled, and white-stringy, the different types being affected by the fungal species, wood species, and ecological conditions. From microscopic and ultrastructural investiga-tions, two main types of white rot have been distinguished (Liese 1970).  In the simultaneous white rot ("corrosion rot"), carbohydrates and lignin are almost uniformly degraded at the same time and at a similar rate during all decay stages. Typical fungi with simultaneous white rot are Fomes fomentar-ws, Phellinus igniarius, Phellinus robustus, and Trametes versicolor in standing trees and stored hardwoods (Blanchette 1984a).  Wood decay

Soft Rot

The term " soft rot " was originally used by Findlay and Savory (1954) to describe a specific type of wood decay caused by Ascomycetes and Deuteromycetes which typically produce chains of cavities within the S2 layer of soft- and hardwoods in terrestrial and aquatic environments (Liese 1955), for example when the wood-fill  in cooling towers became destroyed despite water saturation, and when poles broke, although they were protected against Basidiomvcetes.  About 300 species (Seehann et al. 1975) to some 1,600 examples of ascomvcete and deuteromvcete fungi (Eaton and Hale 1993) cause soft rot, e.g., Chaeromium globosurn (Takahashi 1978), Hurnicola spp., Lecythophora hoffrnannii, Monodictys putredinis, Paecilornyces spp., and Thielavia terrestris. Soft-rot fungi differ from brown-rot and white-rot Basidiomycetes by grow-ing mainly inside the woody cell wall trate, starting from the tracheidal lumina., by means of thin perforation hyphae of less than 0.5 pm thickne

Antagonists, Synergists, and Succession

                Interactions (reciprocal effects) between wood fungi have been early investi-gated e.g., by Oppermann (1951) and Leslie et al. (1976), and were described in detail by Rayner and Boddy (1988). Antagonism (competitive reciprocal effect), the mutual inhibition and in a broader sense the inhibition of one organism by others, is based on the pro-duction of toxic metabolites, on mycoparasitism, and on nutrient competition.  Antagonisms are investigated as alternative to the chemical protection against tree fungi ("biological forest protection") and against fungi on wood in service ("biological wood protection") (Walchli 1982; Bruce 1992; Holdenrieder and Greig 1998; Phillips-Laing et al. 2003). As early as 1934, Weindling showed the inhibiting effect of Trichoderma species on several fungi. Bjerkandera adusta and Ganoderma species were antagonistic against the causing agent of Plane canker stain disease (Grosclaude et al. 1990). Also, v. Aufseg (197

Growth and Spreading

 Vegetative Growth Simplistically, wood fungi live through two functionally different phases: the vegetative stage for mycelial spread and the reproductive stage for the elab-oration of spore-producing structures. Rayner et al. (1985) extended the development of a fungus in arrival, establishment, exploitation, and exit. The vegetative, asexual stage consists in wood fungi of vegetative hyphae with some specialized forms. The reproductive stage can both occur asexually or sexually (Schwantes 1996). Functional specialization of the mycelium occurs during the vegetative stage: germination, infection, spread, and survival. These functions are correlated with different "fungal organs". Spores (conidia, chlamydospores, also the sex-ually derived asco- and basidiospores) germinate under suitable conditions (moisture, temperature). The young germ hypha first shows some nuclei be-fore the young mycelium grows with septation in the monokaryotic condi( ion. N1ycelial growth takes